3.6.59 \(\int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx\) [559]

3.6.59.1 Optimal result
3.6.59.2 Mathematica [A] (verified)
3.6.59.3 Rubi [A] (verified)
3.6.59.4 Maple [A] (verified)
3.6.59.5 Fricas [A] (verification not implemented)
3.6.59.6 Sympy [F(-1)]
3.6.59.7 Maxima [B] (verification not implemented)
3.6.59.8 Giac [B] (verification not implemented)
3.6.59.9 Mupad [B] (verification not implemented)

3.6.59.1 Optimal result

Integrand size = 21, antiderivative size = 235 \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {3 \left (a^6+5 a^4 b^2+15 a^2 b^4-5 b^6\right ) x}{8 \left (a^2+b^2\right )^4}+\frac {6 a b^5 \log (a \cos (c+d x)+b \sin (c+d x))}{\left (a^2+b^2\right )^4 d}+\frac {3 b \left (a^2-b^2\right ) \left (a^2+5 b^2\right )}{8 \left (a^2+b^2\right )^3 d (a+b \tan (c+d x))}+\frac {\cos ^4(c+d x) (b+a \tan (c+d x))}{4 \left (a^2+b^2\right ) d (a+b \tan (c+d x))}-\frac {\cos ^2(c+d x) \left (b \left (a^2-5 b^2\right )-3 a \left (a^2+3 b^2\right ) \tan (c+d x)\right )}{8 \left (a^2+b^2\right )^2 d (a+b \tan (c+d x))} \]

output
3/8*(a^6+5*a^4*b^2+15*a^2*b^4-5*b^6)*x/(a^2+b^2)^4+6*a*b^5*ln(a*cos(d*x+c) 
+b*sin(d*x+c))/(a^2+b^2)^4/d+3/8*b*(a^2-b^2)*(a^2+5*b^2)/(a^2+b^2)^3/d/(a+ 
b*tan(d*x+c))+1/4*cos(d*x+c)^4*(b+a*tan(d*x+c))/(a^2+b^2)/d/(a+b*tan(d*x+c 
))-1/8*cos(d*x+c)^2*(b*(a^2-5*b^2)-3*a*(a^2+3*b^2)*tan(d*x+c))/(a^2+b^2)^2 
/d/(a+b*tan(d*x+c))
 
3.6.59.2 Mathematica [A] (verified)

Time = 3.60 (sec) , antiderivative size = 416, normalized size of antiderivative = 1.77 \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {4 b \cos ^4(c+d x) (b+a \tan (c+d x))+\frac {2 b \cos ^2(c+d x) \left (-a^2 b+5 b^3+3 a \left (a^2+3 b^2\right ) \tan (c+d x)\right )}{a^2+b^2}-\frac {\sqrt {-b^2} \left (6 a \left (a^2+b^2\right ) \left (a^2+3 b^2\right ) \left (\left (a-\sqrt {-b^2}\right ) \log \left (\sqrt {-b^2}-b \tan (c+d x)\right )+2 \sqrt {-b^2} \log (a+b \tan (c+d x))-\left (a+\sqrt {-b^2}\right ) \log \left (\sqrt {-b^2}+b \tan (c+d x)\right )\right ) (a+b \tan (c+d x))+3 \left (a^4+4 a^2 b^2-5 b^4\right ) \left (2 \sqrt {-b^2} \left (a^2+b^2\right )+\left (-a^2+b^2+2 a \sqrt {-b^2}\right ) \log \left (\sqrt {-b^2}-b \tan (c+d x)\right ) (a+b \tan (c+d x))-4 a \sqrt {-b^2} \log (a+b \tan (c+d x)) (a+b \tan (c+d x))+\left (a^2-b^2+2 a \sqrt {-b^2}\right ) \log \left (\sqrt {-b^2}+b \tan (c+d x)\right ) (a+b \tan (c+d x))\right )\right )}{\left (a^2+b^2\right )^3}}{16 b \left (a^2+b^2\right ) d (a+b \tan (c+d x))} \]

input
Integrate[Cos[c + d*x]^4/(a + b*Tan[c + d*x])^2,x]
 
output
(4*b*Cos[c + d*x]^4*(b + a*Tan[c + d*x]) + (2*b*Cos[c + d*x]^2*(-(a^2*b) + 
 5*b^3 + 3*a*(a^2 + 3*b^2)*Tan[c + d*x]))/(a^2 + b^2) - (Sqrt[-b^2]*(6*a*( 
a^2 + b^2)*(a^2 + 3*b^2)*((a - Sqrt[-b^2])*Log[Sqrt[-b^2] - b*Tan[c + d*x] 
] + 2*Sqrt[-b^2]*Log[a + b*Tan[c + d*x]] - (a + Sqrt[-b^2])*Log[Sqrt[-b^2] 
 + b*Tan[c + d*x]])*(a + b*Tan[c + d*x]) + 3*(a^4 + 4*a^2*b^2 - 5*b^4)*(2* 
Sqrt[-b^2]*(a^2 + b^2) + (-a^2 + b^2 + 2*a*Sqrt[-b^2])*Log[Sqrt[-b^2] - b* 
Tan[c + d*x]]*(a + b*Tan[c + d*x]) - 4*a*Sqrt[-b^2]*Log[a + b*Tan[c + d*x] 
]*(a + b*Tan[c + d*x]) + (a^2 - b^2 + 2*a*Sqrt[-b^2])*Log[Sqrt[-b^2] + b*T 
an[c + d*x]]*(a + b*Tan[c + d*x]))))/(a^2 + b^2)^3)/(16*b*(a^2 + b^2)*d*(a 
 + b*Tan[c + d*x]))
 
3.6.59.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 322, normalized size of antiderivative = 1.37, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {3042, 3987, 27, 496, 25, 686, 27, 657, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sec (c+d x)^4 (a+b \tan (c+d x))^2}dx\)

\(\Big \downarrow \) 3987

\(\displaystyle \frac {\int \frac {b^6}{(a+b \tan (c+d x))^2 \left (\tan ^2(c+d x) b^2+b^2\right )^3}d(b \tan (c+d x))}{b d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b^5 \int \frac {1}{(a+b \tan (c+d x))^2 \left (\tan ^2(c+d x) b^2+b^2\right )^3}d(b \tan (c+d x))}{d}\)

\(\Big \downarrow \) 496

\(\displaystyle \frac {b^5 \left (\frac {a b \tan (c+d x)+b^2}{4 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right )^2 (a+b \tan (c+d x))}-\frac {\int -\frac {3 a^2+4 b \tan (c+d x) a+5 b^2}{(a+b \tan (c+d x))^2 \left (\tan ^2(c+d x) b^2+b^2\right )^2}d(b \tan (c+d x))}{4 b^2 \left (a^2+b^2\right )}\right )}{d}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {b^5 \left (\frac {\int \frac {3 a^2+4 b \tan (c+d x) a+5 b^2}{(a+b \tan (c+d x))^2 \left (\tan ^2(c+d x) b^2+b^2\right )^2}d(b \tan (c+d x))}{4 b^2 \left (a^2+b^2\right )}+\frac {a b \tan (c+d x)+b^2}{4 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right )^2 (a+b \tan (c+d x))}\right )}{d}\)

\(\Big \downarrow \) 686

\(\displaystyle \frac {b^5 \left (\frac {-\frac {\int -\frac {3 \left (a^4+2 b^2 a^2+2 b \left (a^2+3 b^2\right ) \tan (c+d x) a+5 b^4\right )}{(a+b \tan (c+d x))^2 \left (\tan ^2(c+d x) b^2+b^2\right )}d(b \tan (c+d x))}{2 b^2 \left (a^2+b^2\right )}-\frac {b^2 \left (a^2-5 b^2\right )-3 a b \left (a^2+3 b^2\right ) \tan (c+d x)}{2 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right ) (a+b \tan (c+d x))}}{4 b^2 \left (a^2+b^2\right )}+\frac {a b \tan (c+d x)+b^2}{4 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right )^2 (a+b \tan (c+d x))}\right )}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {b^5 \left (\frac {\frac {3 \int \frac {a^4+2 b^2 a^2+2 b \left (a^2+3 b^2\right ) \tan (c+d x) a+5 b^4}{(a+b \tan (c+d x))^2 \left (\tan ^2(c+d x) b^2+b^2\right )}d(b \tan (c+d x))}{2 b^2 \left (a^2+b^2\right )}-\frac {b^2 \left (a^2-5 b^2\right )-3 a b \left (a^2+3 b^2\right ) \tan (c+d x)}{2 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right ) (a+b \tan (c+d x))}}{4 b^2 \left (a^2+b^2\right )}+\frac {a b \tan (c+d x)+b^2}{4 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right )^2 (a+b \tan (c+d x))}\right )}{d}\)

\(\Big \downarrow \) 657

\(\displaystyle \frac {b^5 \left (\frac {\frac {3 \int \left (\frac {16 a b^4}{\left (a^2+b^2\right )^2 (a+b \tan (c+d x))}+\frac {a^6+5 b^2 a^4+15 b^4 a^2-16 b^5 \tan (c+d x) a-5 b^6}{\left (a^2+b^2\right )^2 \left (\tan ^2(c+d x) b^2+b^2\right )}+\frac {-a^4-4 b^2 a^2+5 b^4}{\left (a^2+b^2\right ) (a+b \tan (c+d x))^2}\right )d(b \tan (c+d x))}{2 b^2 \left (a^2+b^2\right )}-\frac {b^2 \left (a^2-5 b^2\right )-3 a b \left (a^2+3 b^2\right ) \tan (c+d x)}{2 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right ) (a+b \tan (c+d x))}}{4 b^2 \left (a^2+b^2\right )}+\frac {a b \tan (c+d x)+b^2}{4 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right )^2 (a+b \tan (c+d x))}\right )}{d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {b^5 \left (\frac {a b \tan (c+d x)+b^2}{4 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right )^2 (a+b \tan (c+d x))}+\frac {\frac {3 \left (-\frac {8 a b^4 \log \left (b^2 \tan ^2(c+d x)+b^2\right )}{\left (a^2+b^2\right )^2}+\frac {16 a b^4 \log (a+b \tan (c+d x))}{\left (a^2+b^2\right )^2}+\frac {a^4+4 a^2 b^2-5 b^4}{\left (a^2+b^2\right ) (a+b \tan (c+d x))}+\frac {\left (a^6+5 a^4 b^2+15 a^2 b^4-5 b^6\right ) \arctan (\tan (c+d x))}{b \left (a^2+b^2\right )^2}\right )}{2 b^2 \left (a^2+b^2\right )}-\frac {b^2 \left (a^2-5 b^2\right )-3 a b \left (a^2+3 b^2\right ) \tan (c+d x)}{2 b^2 \left (a^2+b^2\right ) \left (b^2 \tan ^2(c+d x)+b^2\right ) (a+b \tan (c+d x))}}{4 b^2 \left (a^2+b^2\right )}\right )}{d}\)

input
Int[Cos[c + d*x]^4/(a + b*Tan[c + d*x])^2,x]
 
output
(b^5*((b^2 + a*b*Tan[c + d*x])/(4*b^2*(a^2 + b^2)*(a + b*Tan[c + d*x])*(b^ 
2 + b^2*Tan[c + d*x]^2)^2) + (-1/2*(b^2*(a^2 - 5*b^2) - 3*a*b*(a^2 + 3*b^2 
)*Tan[c + d*x])/(b^2*(a^2 + b^2)*(a + b*Tan[c + d*x])*(b^2 + b^2*Tan[c + d 
*x]^2)) + (3*(((a^6 + 5*a^4*b^2 + 15*a^2*b^4 - 5*b^6)*ArcTan[Tan[c + d*x]] 
)/(b*(a^2 + b^2)^2) + (16*a*b^4*Log[a + b*Tan[c + d*x]])/(a^2 + b^2)^2 - ( 
8*a*b^4*Log[b^2 + b^2*Tan[c + d*x]^2])/(a^2 + b^2)^2 + (a^4 + 4*a^2*b^2 - 
5*b^4)/((a^2 + b^2)*(a + b*Tan[c + d*x]))))/(2*b^2*(a^2 + b^2)))/(4*b^2*(a 
^2 + b^2))))/d
 

3.6.59.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 496
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-(a*d + b*c*x))*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/(2*a*(p + 1)*(b*c^2 
 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a 
 + b*x^2)^(p + 1)*Simp[b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3) + b*c*d*(n + 2 
*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[p, -1] && IntQuad 
raticQ[a, 0, b, c, d, n, p, x]
 

rule 657
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_) + (c_.)*( 
x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*((f + g*x)^n/(a + c*x^ 
2)), x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && IntegersQ[n]
 

rule 686
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p 
_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + 
a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[ 
1/(2*a*c*(p + 1)*(c*d^2 + a*e^2))   Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Sim 
p[f*(c^2*d^2*(2*p + 3) + a*c*e^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f 
+ a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ 
[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3987
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_ 
), x_Symbol] :> Simp[1/(b*f)   Subst[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), 
 x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && NeQ[a^2 + b^2, 
0] && IntegerQ[m/2]
 
3.6.59.4 Maple [A] (verified)

Time = 16.90 (sec) , antiderivative size = 248, normalized size of antiderivative = 1.06

method result size
derivativedivides \(\frac {\frac {\frac {\left (\frac {3}{8} a^{6}+\frac {15}{8} a^{4} b^{2}+\frac {5}{8} a^{2} b^{4}-\frac {7}{8} b^{6}\right ) \left (\tan ^{3}\left (d x +c \right )\right )+\left (2 a^{3} b^{3}+2 a \,b^{5}\right ) \left (\tan ^{2}\left (d x +c \right )\right )+\left (\frac {17}{8} a^{4} b^{2}+\frac {3}{8} a^{2} b^{4}-\frac {9}{8} b^{6}+\frac {5}{8} a^{6}\right ) \tan \left (d x +c \right )+\frac {a^{5} b}{2}+3 a^{3} b^{3}+\frac {5 a \,b^{5}}{2}}{\left (1+\tan ^{2}\left (d x +c \right )\right )^{2}}-3 a \,b^{5} \ln \left (1+\tan ^{2}\left (d x +c \right )\right )+\frac {3 \left (a^{6}+5 a^{4} b^{2}+15 a^{2} b^{4}-5 b^{6}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{8}}{\left (a^{2}+b^{2}\right )^{4}}-\frac {b^{5}}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (d x +c \right )\right )}+\frac {6 b^{5} a \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}}{d}\) \(248\)
default \(\frac {\frac {\frac {\left (\frac {3}{8} a^{6}+\frac {15}{8} a^{4} b^{2}+\frac {5}{8} a^{2} b^{4}-\frac {7}{8} b^{6}\right ) \left (\tan ^{3}\left (d x +c \right )\right )+\left (2 a^{3} b^{3}+2 a \,b^{5}\right ) \left (\tan ^{2}\left (d x +c \right )\right )+\left (\frac {17}{8} a^{4} b^{2}+\frac {3}{8} a^{2} b^{4}-\frac {9}{8} b^{6}+\frac {5}{8} a^{6}\right ) \tan \left (d x +c \right )+\frac {a^{5} b}{2}+3 a^{3} b^{3}+\frac {5 a \,b^{5}}{2}}{\left (1+\tan ^{2}\left (d x +c \right )\right )^{2}}-3 a \,b^{5} \ln \left (1+\tan ^{2}\left (d x +c \right )\right )+\frac {3 \left (a^{6}+5 a^{4} b^{2}+15 a^{2} b^{4}-5 b^{6}\right ) \arctan \left (\tan \left (d x +c \right )\right )}{8}}{\left (a^{2}+b^{2}\right )^{4}}-\frac {b^{5}}{\left (a^{2}+b^{2}\right )^{3} \left (a +b \tan \left (d x +c \right )\right )}+\frac {6 b^{5} a \ln \left (a +b \tan \left (d x +c \right )\right )}{\left (a^{2}+b^{2}\right )^{4}}}{d}\) \(248\)
risch \(\frac {12 i x a b}{32 i a^{3} b -32 i a \,b^{3}-8 a^{4}+48 a^{2} b^{2}-8 b^{4}}-\frac {3 x \,a^{2}}{32 i a^{3} b -32 i a \,b^{3}-8 a^{4}+48 a^{2} b^{2}-8 b^{4}}+\frac {15 x \,b^{2}}{32 i a^{3} b -32 i a \,b^{3}-8 a^{4}+48 a^{2} b^{2}-8 b^{4}}-\frac {i {\mathrm e}^{4 i \left (d x +c \right )}}{64 \left (-2 i a b +a^{2}-b^{2}\right ) d}-\frac {{\mathrm e}^{2 i \left (d x +c \right )} b}{4 \left (-3 i b \,a^{2}+i b^{3}+a^{3}-3 a \,b^{2}\right ) d}-\frac {i {\mathrm e}^{2 i \left (d x +c \right )} a}{8 \left (-3 i b \,a^{2}+i b^{3}+a^{3}-3 a \,b^{2}\right ) d}-\frac {{\mathrm e}^{-2 i \left (d x +c \right )} b}{4 \left (2 i a b +a^{2}-b^{2}\right ) \left (i b +a \right ) d}+\frac {i {\mathrm e}^{-2 i \left (d x +c \right )} a}{8 \left (2 i a b +a^{2}-b^{2}\right ) \left (i b +a \right ) d}+\frac {i {\mathrm e}^{-4 i \left (d x +c \right )}}{64 \left (2 i a b +a^{2}-b^{2}\right ) d}-\frac {12 i a \,b^{5} x}{a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}}-\frac {12 i a \,b^{5} c}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}-\frac {2 i b^{6}}{\left (-i a +b \right )^{3} d \left (i a +b \right )^{4} \left (b \,{\mathrm e}^{2 i \left (d x +c \right )}+i a \,{\mathrm e}^{2 i \left (d x +c \right )}-b +i a \right )}+\frac {6 a \,b^{5} \ln \left ({\mathrm e}^{2 i \left (d x +c \right )}-\frac {i b +a}{i b -a}\right )}{d \left (a^{8}+4 a^{6} b^{2}+6 a^{4} b^{4}+4 b^{6} a^{2}+b^{8}\right )}\) \(562\)

input
int(cos(d*x+c)^4/(a+b*tan(d*x+c))^2,x,method=_RETURNVERBOSE)
 
output
1/d*(1/(a^2+b^2)^4*(((3/8*a^6+15/8*a^4*b^2+5/8*a^2*b^4-7/8*b^6)*tan(d*x+c) 
^3+(2*a^3*b^3+2*a*b^5)*tan(d*x+c)^2+(17/8*a^4*b^2+3/8*a^2*b^4-9/8*b^6+5/8* 
a^6)*tan(d*x+c)+1/2*a^5*b+3*a^3*b^3+5/2*a*b^5)/(1+tan(d*x+c)^2)^2-3*a*b^5* 
ln(1+tan(d*x+c)^2)+3/8*(a^6+5*a^4*b^2+15*a^2*b^4-5*b^6)*arctan(tan(d*x+c)) 
)-b^5/(a^2+b^2)^3/(a+b*tan(d*x+c))+6*b^5/(a^2+b^2)^4*a*ln(a+b*tan(d*x+c)))
 
3.6.59.5 Fricas [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 424, normalized size of antiderivative = 1.80 \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {4 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \cos \left (d x + c\right )^{5} - 2 \, {\left (a^{6} b - 3 \, a^{4} b^{3} - 9 \, a^{2} b^{5} - 5 \, b^{7}\right )} \cos \left (d x + c\right )^{3} + {\left (3 \, a^{6} b + 8 \, a^{4} b^{3} - 9 \, a^{2} b^{5} - 30 \, b^{7} + 6 \, {\left (a^{7} + 5 \, a^{5} b^{2} + 15 \, a^{3} b^{4} - 5 \, a b^{6}\right )} d x\right )} \cos \left (d x + c\right ) + 48 \, {\left (a^{2} b^{5} \cos \left (d x + c\right ) + a b^{6} \sin \left (d x + c\right )\right )} \log \left (2 \, a b \cos \left (d x + c\right ) \sin \left (d x + c\right ) + {\left (a^{2} - b^{2}\right )} \cos \left (d x + c\right )^{2} + b^{2}\right ) - {\left (3 \, a^{5} b^{2} + 22 \, a^{3} b^{4} + 3 \, a b^{6} - 4 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \cos \left (d x + c\right )^{4} - 6 \, {\left (a^{6} b + 5 \, a^{4} b^{3} + 15 \, a^{2} b^{5} - 5 \, b^{7}\right )} d x - 6 \, {\left (a^{7} + 5 \, a^{5} b^{2} + 7 \, a^{3} b^{4} + 3 \, a b^{6}\right )} \cos \left (d x + c\right )^{2}\right )} \sin \left (d x + c\right )}{16 \, {\left ({\left (a^{9} + 4 \, a^{7} b^{2} + 6 \, a^{5} b^{4} + 4 \, a^{3} b^{6} + a b^{8}\right )} d \cos \left (d x + c\right ) + {\left (a^{8} b + 4 \, a^{6} b^{3} + 6 \, a^{4} b^{5} + 4 \, a^{2} b^{7} + b^{9}\right )} d \sin \left (d x + c\right )\right )}} \]

input
integrate(cos(d*x+c)^4/(a+b*tan(d*x+c))^2,x, algorithm="fricas")
 
output
1/16*(4*(a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*cos(d*x + c)^5 - 2*(a^6*b - 
3*a^4*b^3 - 9*a^2*b^5 - 5*b^7)*cos(d*x + c)^3 + (3*a^6*b + 8*a^4*b^3 - 9*a 
^2*b^5 - 30*b^7 + 6*(a^7 + 5*a^5*b^2 + 15*a^3*b^4 - 5*a*b^6)*d*x)*cos(d*x 
+ c) + 48*(a^2*b^5*cos(d*x + c) + a*b^6*sin(d*x + c))*log(2*a*b*cos(d*x + 
c)*sin(d*x + c) + (a^2 - b^2)*cos(d*x + c)^2 + b^2) - (3*a^5*b^2 + 22*a^3* 
b^4 + 3*a*b^6 - 4*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*cos(d*x + c)^4 - 6 
*(a^6*b + 5*a^4*b^3 + 15*a^2*b^5 - 5*b^7)*d*x - 6*(a^7 + 5*a^5*b^2 + 7*a^3 
*b^4 + 3*a*b^6)*cos(d*x + c)^2)*sin(d*x + c))/((a^9 + 4*a^7*b^2 + 6*a^5*b^ 
4 + 4*a^3*b^6 + a*b^8)*d*cos(d*x + c) + (a^8*b + 4*a^6*b^3 + 6*a^4*b^5 + 4 
*a^2*b^7 + b^9)*d*sin(d*x + c))
 
3.6.59.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4/(a+b*tan(d*x+c))**2,x)
 
output
Timed out
 
3.6.59.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 502 vs. \(2 (228) = 456\).

Time = 0.48 (sec) , antiderivative size = 502, normalized size of antiderivative = 2.14 \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {48 \, a b^{5} \log \left (b \tan \left (d x + c\right ) + a\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} - \frac {24 \, a b^{5} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {3 \, {\left (a^{6} + 5 \, a^{4} b^{2} + 15 \, a^{2} b^{4} - 5 \, b^{6}\right )} {\left (d x + c\right )}}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {4 \, a^{4} b + 20 \, a^{2} b^{3} - 8 \, b^{5} + 3 \, {\left (a^{4} b + 4 \, a^{2} b^{3} - 5 \, b^{5}\right )} \tan \left (d x + c\right )^{4} + 3 \, {\left (a^{5} + 4 \, a^{3} b^{2} + 3 \, a b^{4}\right )} \tan \left (d x + c\right )^{3} + {\left (5 \, a^{4} b + 28 \, a^{2} b^{3} - 25 \, b^{5}\right )} \tan \left (d x + c\right )^{2} + {\left (5 \, a^{5} + 16 \, a^{3} b^{2} + 11 \, a b^{4}\right )} \tan \left (d x + c\right )}{a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \tan \left (d x + c\right )^{5} + {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \tan \left (d x + c\right )^{4} + 2 \, {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \tan \left (d x + c\right )^{3} + 2 \, {\left (a^{7} + 3 \, a^{5} b^{2} + 3 \, a^{3} b^{4} + a b^{6}\right )} \tan \left (d x + c\right )^{2} + {\left (a^{6} b + 3 \, a^{4} b^{3} + 3 \, a^{2} b^{5} + b^{7}\right )} \tan \left (d x + c\right )}}{8 \, d} \]

input
integrate(cos(d*x+c)^4/(a+b*tan(d*x+c))^2,x, algorithm="maxima")
 
output
1/8*(48*a*b^5*log(b*tan(d*x + c) + a)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2 
*b^6 + b^8) - 24*a*b^5*log(tan(d*x + c)^2 + 1)/(a^8 + 4*a^6*b^2 + 6*a^4*b^ 
4 + 4*a^2*b^6 + b^8) + 3*(a^6 + 5*a^4*b^2 + 15*a^2*b^4 - 5*b^6)*(d*x + c)/ 
(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) + (4*a^4*b + 20*a^2*b^3 - 
8*b^5 + 3*(a^4*b + 4*a^2*b^3 - 5*b^5)*tan(d*x + c)^4 + 3*(a^5 + 4*a^3*b^2 
+ 3*a*b^4)*tan(d*x + c)^3 + (5*a^4*b + 28*a^2*b^3 - 25*b^5)*tan(d*x + c)^2 
 + (5*a^5 + 16*a^3*b^2 + 11*a*b^4)*tan(d*x + c))/(a^7 + 3*a^5*b^2 + 3*a^3* 
b^4 + a*b^6 + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*tan(d*x + c)^5 + (a^7 
+ 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*tan(d*x + c)^4 + 2*(a^6*b + 3*a^4*b^3 + 3 
*a^2*b^5 + b^7)*tan(d*x + c)^3 + 2*(a^7 + 3*a^5*b^2 + 3*a^3*b^4 + a*b^6)*t 
an(d*x + c)^2 + (a^6*b + 3*a^4*b^3 + 3*a^2*b^5 + b^7)*tan(d*x + c)))/d
 
3.6.59.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 464 vs. \(2 (228) = 456\).

Time = 0.47 (sec) , antiderivative size = 464, normalized size of antiderivative = 1.97 \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {48 \, a b^{6} \log \left ({\left | b \tan \left (d x + c\right ) + a \right |}\right )}{a^{8} b + 4 \, a^{6} b^{3} + 6 \, a^{4} b^{5} + 4 \, a^{2} b^{7} + b^{9}} - \frac {24 \, a b^{5} \log \left (\tan \left (d x + c\right )^{2} + 1\right )}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} + \frac {3 \, {\left (a^{6} + 5 \, a^{4} b^{2} + 15 \, a^{2} b^{4} - 5 \, b^{6}\right )} {\left (d x + c\right )}}{a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}} - \frac {8 \, {\left (6 \, a b^{6} \tan \left (d x + c\right ) + 7 \, a^{2} b^{5} + b^{7}\right )}}{{\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )} {\left (b \tan \left (d x + c\right ) + a\right )}} + \frac {36 \, a b^{5} \tan \left (d x + c\right )^{4} + 3 \, a^{6} \tan \left (d x + c\right )^{3} + 15 \, a^{4} b^{2} \tan \left (d x + c\right )^{3} + 5 \, a^{2} b^{4} \tan \left (d x + c\right )^{3} - 7 \, b^{6} \tan \left (d x + c\right )^{3} + 16 \, a^{3} b^{3} \tan \left (d x + c\right )^{2} + 88 \, a b^{5} \tan \left (d x + c\right )^{2} + 5 \, a^{6} \tan \left (d x + c\right ) + 17 \, a^{4} b^{2} \tan \left (d x + c\right ) + 3 \, a^{2} b^{4} \tan \left (d x + c\right ) - 9 \, b^{6} \tan \left (d x + c\right ) + 4 \, a^{5} b + 24 \, a^{3} b^{3} + 56 \, a b^{5}}{{\left (a^{8} + 4 \, a^{6} b^{2} + 6 \, a^{4} b^{4} + 4 \, a^{2} b^{6} + b^{8}\right )} {\left (\tan \left (d x + c\right )^{2} + 1\right )}^{2}}}{8 \, d} \]

input
integrate(cos(d*x+c)^4/(a+b*tan(d*x+c))^2,x, algorithm="giac")
 
output
1/8*(48*a*b^6*log(abs(b*tan(d*x + c) + a))/(a^8*b + 4*a^6*b^3 + 6*a^4*b^5 
+ 4*a^2*b^7 + b^9) - 24*a*b^5*log(tan(d*x + c)^2 + 1)/(a^8 + 4*a^6*b^2 + 6 
*a^4*b^4 + 4*a^2*b^6 + b^8) + 3*(a^6 + 5*a^4*b^2 + 15*a^2*b^4 - 5*b^6)*(d* 
x + c)/(a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) - 8*(6*a*b^6*tan(d* 
x + c) + 7*a^2*b^5 + b^7)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2*b^6 + b^8) 
*(b*tan(d*x + c) + a)) + (36*a*b^5*tan(d*x + c)^4 + 3*a^6*tan(d*x + c)^3 + 
 15*a^4*b^2*tan(d*x + c)^3 + 5*a^2*b^4*tan(d*x + c)^3 - 7*b^6*tan(d*x + c) 
^3 + 16*a^3*b^3*tan(d*x + c)^2 + 88*a*b^5*tan(d*x + c)^2 + 5*a^6*tan(d*x + 
 c) + 17*a^4*b^2*tan(d*x + c) + 3*a^2*b^4*tan(d*x + c) - 9*b^6*tan(d*x + c 
) + 4*a^5*b + 24*a^3*b^3 + 56*a*b^5)/((a^8 + 4*a^6*b^2 + 6*a^4*b^4 + 4*a^2 
*b^6 + b^8)*(tan(d*x + c)^2 + 1)^2))/d
 
3.6.59.9 Mupad [B] (verification not implemented)

Time = 5.33 (sec) , antiderivative size = 463, normalized size of antiderivative = 1.97 \[ \int \frac {\cos ^4(c+d x)}{(a+b \tan (c+d x))^2} \, dx=\frac {\frac {3\,{\mathrm {tan}\left (c+d\,x\right )}^4\,\left (a^4\,b+4\,a^2\,b^3-5\,b^5\right )}{8\,\left (a^6+3\,a^4\,b^2+3\,a^2\,b^4+b^6\right )}+\frac {a^4\,b+5\,a^2\,b^3-2\,b^5}{2\,\left (a^2+b^2\right )\,\left (a^4+2\,a^2\,b^2+b^4\right )}+\frac {\mathrm {tan}\left (c+d\,x\right )\,\left (5\,a^3+11\,a\,b^2\right )}{8\,\left (a^4+2\,a^2\,b^2+b^4\right )}+\frac {3\,{\mathrm {tan}\left (c+d\,x\right )}^3\,\left (a^3+3\,a\,b^2\right )}{8\,\left (a^4+2\,a^2\,b^2+b^4\right )}+\frac {{\mathrm {tan}\left (c+d\,x\right )}^2\,\left (5\,a^4\,b+28\,a^2\,b^3-25\,b^5\right )}{8\,\left (a^2+b^2\right )\,\left (a^4+2\,a^2\,b^2+b^4\right )}}{d\,\left (b\,{\mathrm {tan}\left (c+d\,x\right )}^5+a\,{\mathrm {tan}\left (c+d\,x\right )}^4+2\,b\,{\mathrm {tan}\left (c+d\,x\right )}^3+2\,a\,{\mathrm {tan}\left (c+d\,x\right )}^2+b\,\mathrm {tan}\left (c+d\,x\right )+a\right )}+\frac {3\,\ln \left (\mathrm {tan}\left (c+d\,x\right )+1{}\mathrm {i}\right )\,\left (-a^2+a\,b\,4{}\mathrm {i}+5\,b^2\right )}{16\,d\,\left (a^4\,1{}\mathrm {i}+4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}-4\,a\,b^3+b^4\,1{}\mathrm {i}\right )}+\frac {3\,\ln \left (\mathrm {tan}\left (c+d\,x\right )-\mathrm {i}\right )\,\left (a^2+a\,b\,4{}\mathrm {i}-5\,b^2\right )}{16\,d\,\left (a^4\,1{}\mathrm {i}-4\,a^3\,b-a^2\,b^2\,6{}\mathrm {i}+4\,a\,b^3+b^4\,1{}\mathrm {i}\right )}+\frac {6\,a\,b^5\,\ln \left (a+b\,\mathrm {tan}\left (c+d\,x\right )\right )}{d\,{\left (a^2+b^2\right )}^4} \]

input
int(cos(c + d*x)^4/(a + b*tan(c + d*x))^2,x)
 
output
((3*tan(c + d*x)^4*(a^4*b - 5*b^5 + 4*a^2*b^3))/(8*(a^6 + b^6 + 3*a^2*b^4 
+ 3*a^4*b^2)) + (a^4*b - 2*b^5 + 5*a^2*b^3)/(2*(a^2 + b^2)*(a^4 + b^4 + 2* 
a^2*b^2)) + (tan(c + d*x)*(11*a*b^2 + 5*a^3))/(8*(a^4 + b^4 + 2*a^2*b^2)) 
+ (3*tan(c + d*x)^3*(3*a*b^2 + a^3))/(8*(a^4 + b^4 + 2*a^2*b^2)) + (tan(c 
+ d*x)^2*(5*a^4*b - 25*b^5 + 28*a^2*b^3))/(8*(a^2 + b^2)*(a^4 + b^4 + 2*a^ 
2*b^2)))/(d*(a + b*tan(c + d*x) + 2*a*tan(c + d*x)^2 + a*tan(c + d*x)^4 + 
2*b*tan(c + d*x)^3 + b*tan(c + d*x)^5)) + (3*log(tan(c + d*x) + 1i)*(a*b*4 
i - a^2 + 5*b^2))/(16*d*(4*a^3*b - 4*a*b^3 + a^4*1i + b^4*1i - a^2*b^2*6i) 
) + (3*log(tan(c + d*x) - 1i)*(a*b*4i + a^2 - 5*b^2))/(16*d*(4*a*b^3 - 4*a 
^3*b + a^4*1i + b^4*1i - a^2*b^2*6i)) + (6*a*b^5*log(a + b*tan(c + d*x)))/ 
(d*(a^2 + b^2)^4)